派生数学函数
公式
下列是由固有数学函数派生的非固有数学函数
函数 | 派生的等效公式 |
---|---|
Secant(正割) | Sec(X) = 1 / Cos(X) |
Cosecant(余割) | Cosec(X) = 1 / Sin(X) |
Cotangent(余切) | Cotan(X) = 1 / Tan(X) |
Inverse Sine(反正弦) | Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
Inverse Cosine(反余弦) | Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
Inverse Secant(反正割) | Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) |
Inverse Cosecant(反余割) | Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) |
Inverse Cotangent(反余切) | Arccotan(X) = Atn(X) + 2 * Atn(1) |
Hyperbolic Sine(双曲正弦) | HSin(X) = (Exp(X) - Exp(-X)) / 2 |
Hyperbolic Cosine(双曲余弦) | HCos(X) = (Exp(X) + Exp(-X)) / 2 |
Hyperbolic Tangent(双曲正切) | HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) |
Hyperbolic Secant(双曲正割) | HSec(X) = 2 / (Exp(X) + Exp(-X)) |
Hyperbolic Cosecant(双曲余割) | HCosec(X) = 2 / (Exp(X) - Exp(-X)) |
Hyperbolic Cotangent(双曲余切) | HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) |
Inverse Hyperbolic Sine(反双曲正弦) | HArcsin(X) = Ln(X + Sqr(X * X + 1)) |
Inverse Hyperbolic Cosine(反双曲余弦) | HArccos(X) = Ln(X + Sqr(X * X - 1)) |
Inverse Hyperbolic Tangent(反双曲正切) | HArctan(X) = Ln((1 + X) / (1 - X)) / 2 |
Inverse Hyperbolic Secant(反双曲正割) | HArcsec(X) = Ln((Sqr(-X * X + 1) + 1) / X) |
Inverse Hyperbolic Cosecant(反双曲余割) | HArccosec(X) = Ln((Sgn(X) * Sqr(X * X + 1) +1) / X) |
Inverse Hyperbolic Cotangent(反双曲余切) | HArccotan(X) = Ln((X + 1) / (X - 1)) / 2 |
以 N 为底的对数 | LogN(X) = Ln(X) / Ln(N) |
相关
Sin 正弦( | Cos 余弦 | Tan 正切 | Atn 反正切 | Ln 自然对数为底的对数